Machine Learning for Survival Analysis: A Case Study on Recurrence of Prostate Cancer

نویسندگان

  • Blaz Zupan
  • Janez Demsar
  • Michael W. Kattan
  • J. Robert Beck
  • Ivan Bratko
چکیده

Machine learning techniques have recently received considerable attention, especially when used for the construction of prediction models from data. Despite their potential advantages over standard statistical methods, like their ability to model non-linear relationships and construct symbolic and interpretable models, their applications to survival analysis are at best rare, primarily because of the difficulty to appropriately handle censored data. In this paper we propose a schema that enables the use of classification methods--including machine learning classifiers--for survival analysis. To appropriately consider the follow-up time and censoring, we propose a technique that, for the patients for which the event did not occur and have short follow-up times, estimates their probability of event and assigns them a distribution of outcome accordingly. Since most machine learning techniques do not deal with outcome distributions, the schema is implemented using weighted examples. To show the utility of the proposed technique, we investigate a particular problem of building prognostic models for prostate cancer recurrence, where the sole prediction of the probability of event (and not its probability dependency on time) is of interest. A case study on preoperative and postoperative prostate cancer recurrence prediction shows that by incorporating this weighting technique the machine learning tools stand beside modern statistical methods and may, by inducing symbolic recurrence models, provide further insight to relationships within the modeled data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association between prostate specific antigen change over time and prostate cancer recurrence risk: a joint model

Background: Prostate specific antigen (PSA) is an important biomarker to monitor patients after treated with radiation therapy (RT). The aim of this study is to evaluate the relationship between the PSA data and prostate cancer recurrence using the joint modeling. Methods: This historical cohort study was performed on 422 prostate cancer patients. Inclusion criteria included: patients with loc...

متن کامل

Neoadjuvant chemotherapy in high-risk localized prostate cancer: a systematic review

Background: The rate of recurrence and mortality in high-risk prostate cancer remains high. On the other hand, the use of chemotherapy in metastatic prostate cancer has improved overall survival of patients. The aim of this study was to evaluate the effect of neoadjuvant chemotherapy alone on increasing survival of patients with high risk localized prostate cancer Methods: This is a systematic...

متن کامل

Prostate cancer radiomics: A study on IMRT response prediction based on MR image features and machine learning approaches

Introduction: To develop different radiomic models based on radiomic features and machine learning methods to predict early intensity modulated radiation therapy (IMRT) response.   Materials and Methods: Thirty prostate patients were included. All patients underwent pre ad post-IMRT T2 weighted and apparent diffusing coefficient (ADC) magnetic resonance imagi...

متن کامل

PSA Screening in Prostate Cancer

Introduction: Prostate cancer is one of the most common cancers in Iranian men. PSA(prostate specific antigen) screening is a controversial issue because PSA screening leads to diagnose of patients with low risk prostate cancer who not only do not benefit from treatment but also suffer from complication caused by treatment. On the other hand, without prostate cancer screening, the rate of meta...

متن کامل

A Review of Surface-Enhanced Raman Spectroscopy on Potential Clinical Applications Towards Diagnosing Colorectal Cancer

Colorectal cancer (CRC) is one of the leading cancers in the world and early-screening is still the best method of cancer patient survival. However, colonoscopy as the current gold standard is not without flaws and an emerging technique called surface-enhanced Raman spectroscopy (SERS) coupled with machine learning is a possible candidate that could be applied in parallel with colonoscopy. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artificial intelligence in medicine

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 1999